platform/packages/container/angel_container/lib/src/container.dart
2022-01-23 13:10:50 +08:00

239 lines
6.3 KiB
Dart

import 'dart:async';
import 'exception.dart';
import 'reflector.dart';
class Container {
final Reflector reflector;
final Map<Type, dynamic> _singletons = {};
final Map<Type, dynamic Function(Container)> _factories = {};
final Map<String, dynamic> _namedSingletons = {};
final Container? _parent;
Container(this.reflector) : _parent = null;
Container._child(Container this._parent) : reflector = _parent.reflector;
bool get isRoot => _parent == null;
/// Creates a child [Container] that can define its own singletons and factories.
///
/// Use this to create children of a global "scope."
Container createChild() {
return Container._child(this);
}
/// Determines if the container has an injection of the given type.
bool has<T>([Type? t]) {
var t2 = T;
if (t != null) {
t2 = t;
} else if (T == dynamic && t == null) {
return false;
}
Container? search = this;
while (search != null) {
if (search._singletons.containsKey(t2)) {
return true;
} else if (search._factories.containsKey(t2)) {
return true;
} else {
search = search._parent;
}
}
return false;
}
/// Determines if the container has a named singleton with the given [name].
bool hasNamed(String name) {
Container? search = this;
while (search != null) {
if (search._namedSingletons.containsKey(name)) {
return true;
} else {
search = search._parent;
}
}
return false;
}
/// Instantiates an instance of [T], asynchronously.
///
/// It is similar to [make], but resolves an injection of either
/// `Future<T>` or `T`.
Future<T> makeAsync<T>([Type? type]) {
var t2 = T;
if (type != null) {
t2 = type;
}
Type? futureType; //.Future<T>.value(null).runtimeType;
if (T == dynamic) {
try {
futureType = reflector.reflectFutureOf(t2).reflectedType;
} on UnsupportedError {
// Ignore this.
}
}
if (has<T>(t2)) {
return Future<T>.value(make(t2));
} else if (has<Future<T>>()) {
return make<Future<T>>();
} else if (futureType != null) {
return make(futureType);
} else {
throw ReflectionException(
'No injection for Future<$t2> or $t2 was found.');
}
}
/// Instantiates an instance of [T].
///
/// In contexts where a static generic type cannot be used, use
/// the [type] argument, instead of [T].
T make<T>([Type? type]) {
var t2 = T;
if (type != null) {
t2 = type;
}
Container? search = this;
while (search != null) {
if (search._singletons.containsKey(t2)) {
// Find a singleton, if any.
return search._singletons[t2] as T;
} else if (search._factories.containsKey(t2)) {
// Find a factory, if any.
return search._factories[t2]!(this) as T;
} else {
search = search._parent;
}
}
var reflectedType = reflector.reflectType(t2);
var positional = [];
var named = <String, dynamic>{};
if (reflectedType is ReflectedClass) {
bool isDefault(String name) {
return name.isEmpty || name == reflectedType.name;
}
var constructor = reflectedType.constructors.firstWhere(
(c) => isDefault(c.name),
orElse: (() => throw ReflectionException(
'${reflectedType.name} has no default constructor, and therefore cannot be instantiated.')));
for (var param in constructor.parameters) {
var value = make(param.type.reflectedType);
if (param.isNamed) {
named[param.name] = value;
} else {
positional.add(value);
}
}
return reflectedType.newInstance(
isDefault(constructor.name) ? '' : constructor.name,
positional,
named, []).reflectee as T;
} else {
throw ReflectionException(
'$t2 is not a class, and therefore cannot be instantiated.');
}
}
/// Shorthand for registering a factory that injects a singleton when it runs.
///
/// In many cases, you might prefer this to [registerFactory].
///
/// Returns [f].
T Function(Container) registerLazySingleton<T>(T Function(Container) f,
{Type? as}) {
return registerFactory<T>(
(container) {
var r = f(container);
container.registerSingleton<T>(r, as: as);
return r;
},
as: as,
);
}
/// Registers a factory. Any attempt to resolve the
/// type within *this* container will return the result of [f].
///
/// Returns [f].
T Function(Container) registerFactory<T>(T Function(Container) f,
{Type? as}) {
Type t2 = T;
if (as != null) {
t2 = as;
}
if (_factories.containsKey(t2)) {
throw StateError('This container already has a factory for $t2.');
}
_factories[t2] = f;
return f;
}
/// Registers a singleton. Any attempt to resolve the
/// type within *this* container will return [object].
///
/// Returns [object].
T registerSingleton<T>(T object, {Type? as}) {
Type t2 = T;
if (as != null) {
t2 = as;
} else if (T == dynamic) {
t2 = as ?? object.runtimeType;
}
//as ??= T == dynamic ? as : T;
if (_singletons.containsKey(t2)) {
throw StateError('This container already has a singleton for $t2.');
}
_singletons[t2] = object;
return object;
}
/// Finds a named singleton.
///
/// In general, prefer using [registerSingleton] and [registerFactory].
///
/// [findByName] is best reserved for internal logic that end users of code should
/// not see.
T findByName<T>(String name) {
if (_namedSingletons.containsKey(name)) {
return _namedSingletons[name] as T;
} else if (_parent != null) {
return _parent!.findByName<T>(name);
} else {
throw StateError(
'This container does not have a singleton named "$name".');
}
}
/// Registers a *named* singleton.
///
/// Note that this is not related to type-based injections, and exists as a mechanism
/// to enable injecting multiple instances of a type within the same container hierarchy.
T registerNamedSingleton<T>(String name, T object) {
if (_namedSingletons.containsKey(name)) {
throw StateError('This container already has a singleton named "$name".');
}
_namedSingletons[name] = object;
return object;
}
}