platform/README.md
2018-09-04 18:00:53 -04:00

106 lines
No EOL
3.5 KiB
Markdown

# production
Helpers for concurrency, message-passing, rotating loggers, and other production functionality in Angel.
![Screenshot](screenshot.png)
This will become the de-facto way to run Angel applications in deployed environments, as it
takes care of inter-isolate communication, respawning dead processes, and other housekeeping for you automatically.
Most users will want to use the `Runner` class.
## `Runner`
`Runner` is a utility, powered by `package:args`, that is intended to be the entry point of your application.
Instantiate it as follows, and your file will become a command-line executable that spawns multiple instances of your
application:
```dart
import 'dart:async';
import 'dart:isolate';
import 'package:angel_framework/angel_framework.dart';
import 'package:angel_production/angel_production.dart';
main(List<String> args) => new Runner('example', configureServer).run(args);
Future configureServer(Angel app) async {
app.get('/', (req, res) => 'Hello, production world!');
app.get('/crash', (req, res) {
// We'll crash this instance deliberately, but the Runner will auto-respawn for us.
new Timer(const Duration(seconds: 3), Isolate.current.kill);
return 'Crashing in 3s...';
});
}
```
`Runner` will automatically re-spawn crashed instances, unless `--no-respawn` is passed. This can prevent
your server from entirely going down at the first error, and adds a layer of fault tolerance to your
infrastructure.
When combined with `systemd`, deploying Angel applications on Linux can be very simple.
## Message Passing
The `Runner` class uses [`package:pub_sub`](https://github.com/thosakwe/pub_sub) to coordinate
message passing between isolates.
When one isolate sends a message, all other isolates will
receive the same message, except for the isolate that sent it.
It is injected into your application's `Container` as
`pub_sub.Client`, so you can use it as follows:
```dart
// Use the injected `pub_sub.Client` to send messages.
var client = app.container.make<pub_sub.Client>();
// We can listen for an event to perform some behavior.
//
// Here, we use message passing to synchronize some common state.
var onGreetingChanged = await client.subscribe('user_upgraded');
onGreetingChanged
.cast<User>()
.listen((user) {
// Do something...
});
```
## Run-time Metadata
At run-time, you may want to know information about the currently-running instance,
for example, which number instance. For this, the `InstanceInfo` class is injected
into each instance:
```dart
var instanceInfo = app.container.make<InstanceInfo>();
print('This is instance #${instanceInfo.id}');
```
## Command-line Options
The `Runner` class supplies options like the following:
```
wg-dhcp201d194d221:production thosakwe$ dart example/main.dart --help
____________ ________________________
___ |__ | / /_ ____/__ ____/__ /
__ /| |_ |/ /_ / __ __ __/ __ /
_ ___ | /| / / /_/ / _ /___ _ /___
/_/ |_/_/ |_/ ____/ /_____/ /_____/
A batteries-included, full-featured, full-stack framework in Dart.
https://angel-dart.github.io
Options:
-h, --help Print this help information.
--[no-]respawn Automatically respawn crashed application instances.
(defaults to on)
--use-zone Create a new Zone for each request.
-a, --address The address to listen on.
(defaults to "127.0.0.1")
-j, --concurrency The number of isolates to spawn.
(defaults to "4")
-p, --port The port to listen on.
(defaults to "3000")
```